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Abstract. The conflict between relativistic causality and localizability is analysed in the light
of the existence of unsharp localization observables. A theorem due to Schlieder is generalized,
showing that the assumption of local commutativity implies the localization observable in question
to be unsharp in a strong sense. Furthermore, a recent generalization of a theorem of Lüders is
applied to demonstrate that local commutativity is a necessary consequence of Einstein causality
even in the case of unsharp observables if they admit local measurements. These findings raise the
question of whether localization observables can be measured by means of local operations.

1. Introduction

The concept of localization raises intriguing problems in relativistic quantum theory. On one
hand, the idea of localizability (of particles, centres of charge or energy distributions, etc) has
always had an unquestionable heuristic and interpretational value. On the other hand, any
attempt at a formalization of localization as an observable seems to face a fundamental conflict
with the requirement of causality on which (together with some other postulates) relativistic
quantum theories are built. This conflict is epitomized in theorems due to Schlieder [1] and
Hegerfeldt [2].

Further problems arise in the context of the relativistic quantum mechanics of (free)
particles. For example, it has been noted that a conserved probability current with positive
probability density does not exist in all cases (e.g. [3, 4]). Furthermore, no sharp localization
observable exists for particles with zero mass and spin of at least one [5]. These problems are
overcome in an approach that describes (spatial) localization in terms of marginal observables
of covariant phase space observables (e.g. [6, 7, 9]). Such observables are unsharp observables
represented as non-commutative positive operator measures (POMs), thus accounting for the
non-commutativity of position and momentum and the uncertainty relation. This success raises
the question of whether localizability and causality can be reconciled for unsharp (spatial)
localization observables. A pragmatic answer (‘FAPP’) has been given in the phase space
approach in [8], indicating that the possibility for causality-violating behaviour is spurious.

In the present paper Schlieder’s theorem is reconsidered in order to decide whether its
statement also holds in the case of unsharp observables. It turns out that localization observables
will necessarily be unsharp in a strong sense if they are to satisfy the local commutativity
condition (section 2). The question of whether the local commutativity ofunsharplocalization
observables is in turn a necessary consequence of Einstein causality is addressed in section 3.
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General conclusions and problems for future investigation are summarized in section 4. For
the readers’ convenience, basic concepts relating to unsharp observables represented as POMs
are briefly reviewed in appendix A.

2. Unsharp localization versus local commutativity

Schlieder’s theorem [1] is based on the following structures commonly accepted as fundamental
for any relativistic quantum theory.

(a) a complex Hilbert spaceH, the rays of which represent pure states of the system;
(b) a strongly continuous unitary representationa 7→ U(a) in H of the translation group of

Minkowski spaceM;
(c) for any future-directed, timelike unit vectora, the generatorH(a) (Hamiltonian) is

bounded below (spectrum condition).

Within the structure(H, a 7→ U(a)), the following conditions are taken to characterize a
(spatial) localization observable within a given inertial frame.

(0) Localization event structure.Fix a foliation of Minkowski spaceM by means of a family
S of parallel spacelike hyperplanesS; eachS is required to be equipped with a family
F(S) of subsets, calledspatial sets, including a (covering) family of bounded subsets,
and such thatF(S + a) consists of the translates bya of the sets fromF(S); and a map
1 7→ E1 fromF(S) to effects ofH for eachS.

(1) Translation covariance.For alla ∈ M,

U(a)E1U(a)
∗ = E1+a.

(2) Localizability. For eachS ∈ S and11,12 ∈ F(S),
if 11 ∩12 = ∅ then E11E12 = E12E11 = 0.

(3) Local commutativity.ForS1, S2 ∈ S,11 ∈ F(S1),12 ∈ F(S2),

if 11,12 are spacelike separated thenE11E12 = E12E11.

The theorem then reads:

Theorem 1. If the structure(H, a 7→ U(a),1 7→ E1), with theE1 being projectionsP1,
satisfies conditions (1)–(3), thenP1 = 0 for all bounded spatial sets1.

The present formulation of the theorem for projection-valued maps1 7→ P1 is due to
Malament [10]. In Schlieder’s original version, condition (3) was replaced with the somewhat
stronger requirement (referred to as a consequence of causality and similar to Hegerfeldt’s
[2] characterization of causality) that the productP11P12 = 0 for spacelike separated pairs
of sets; then it is pointed out that the localization projectionsP1 cannot belong to any local
algebra. Examples of such ‘non-local’ localization observables are given by the Newton–
Wigner position operators [11] or the corresponding localization spectral measures constructed
by Wightman [5]. It should be noted that these sharp localization observables do satisfy the
covariance condition (1) [12].

Theorem 1 has been interpreted as implying the impossibility of a physically acceptable
notion of localizability of physical systems in relativistic quantum theories. Inasmuch as a
localization observable is a defining feature of a particle, this conclusion would entail the
impossibility of a relativistic quantum mechanics of particles. However, before subscribing to
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such far-reaching conclusions, it is worthwhile to reanalyse the assumptions in some detail in
view of the possibility that localization might be an intrinsically unsharp observable.

In what follows we will not question the postulates (a), (b) and (c), or the property (1) of
translation covariance. We will also tentatively adopt the view that the operational definition of
spatial sets and the continuum of possible spacetime translations can be realized with arbitrary
accuracy by classical physical, macroscopic means. The implications of the fact that measuring
devices such as detectors are composed of quantum constituents will only be explored in the
discussion at the end.

The formulation of the localization event structure is usually somewhat sharpened by
requiring the maps1 7→ E1 to be POMs defined on spatial Borel sets. As we shall see,
this would simplify some of the arguments below. Physically, it would reflect the assumption
that localization is operationally meaningful for arbitrarily small sets, which could again be
challenged on the grounds that detectors are composed of quantum systems.

First we investigate the question of whether or not the statement of theorem 1 extends
to unsharp localization observables as well. To this end we will allow the structure
(H, a 7→ U(a),1 7→ E1) to be based on effectsE1 which are not necessarily projections.

Theorem 2. If the structure(H, a 7→ U(a),1 7→ E1) satisfies conditions (1)–(3), thenE1 =
0 for all (bounded) spatial sets1.

We will sketch a proof of this statement as it is convenient to display the technicalities
involved—they are exactly the same as in the original case. As in that case, the proof rests on
the following substantial result due to Borchers [13], presented here in terms of effects rather
than projections only.

Lemma 1. Let V (t) be a strongly continuous one-parameter group of unitary operators on
a Hilbert space whose generatorH has a spectrum bounded from below. LetE1, E2 be two
effects such that

(i) E1E2 = 0, and
(ii) there isε > 0 such that for allt with |t | < ε, [E1, V (t)E2V (t)

∗] = 0.

ThenE1V (t)E2V (t)
∗ = 0 for all t ∈ R.

Proof. We only show how the statement can be reduced to the known one for projections. Let
P1, P2 be the projections onto the ranges ofE1, E2, respectively. ThenP (0)1 = I −P1, P (0)2 =
I−P2 are the projections onto the kernels. Now, observe thatE1E2 = 0⇔ P1P2 = 0. (In fact,
E1E2ϕ = 0 ∀ϕ ⇔ ran(E2) ⊆ ker(E1) ⇔ P2 6 P (0)1 ⇔ P2(I − P1) = P2 ⇔ P2P1 = 0.)
Next, observe thatV (t)P2V (t)

∗ is the projection onto the range ofV (t)E2V (t)
∗. Hence, (ii)

implies [P1, V (t)P2V (t)
∗] = 0 for all t with |t | < ε. So we have (i) and (ii) forP1, P2, and

thereforeP1V (t)P2V (t)
∗ = 0 for all t . However, this is equivalent toE1V (t)E2V (t)

∗ = 0
for all t . �

It is straightforward to check that Malament’s line of argument goes through for effects
E1 in place of projectionsP1, yieldingE1 = 0 for all bounded1. We will not carry this out
here but later in a somewhat less trivial context. Here we note the following. In view of the
probabilistic interpretation of the operatorsE1, if 11,12 ∈ F(S) are two disjoint subsets,
then the sum of expectations ofE11 andE12 should represent the probability of localizing
the system in11 ∪ 12, and the operator representing these probabilities isE11∪12. Thus
one is led to stipulate the additivity of the map1 7→ E1, that is,E11 + E12 = E11∪12

for disjoint11,12 ∈ F(S). In addition, one might consider the possibility that localization
somewherein a given hyperplane would occur with certainty, that is,ES = I . We note that
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for these probabilistic requirements to be implemented, it is necessary that the familyF(S)
is an algebra. (One usually assumes it to be aσ -algebra, such as, for instance, the Borel
algebra ofS.) However, then for a normalized POM, the localization condition (2) is seen to
be equivalent to the effectsE1 being projections. In fact (2) impliesE1(I −E1) = 0, that is,
E2
1 = E1. The converse implication is trivial. So if localization observables were adequately

represented as normalized POMs, the contents of theorem 2 would immediately reduce to that
of the original theorem. However, one should keep in mind that the normalization condition
does not apply to all POMs representing physical observables.

Our main criticism of theorem 2 aims at another aspect: the formalization of the
localization condition in terms of the algebraic conditionE11E12 = 0 for disjoint spatial
sets. What one actually tries to express with this condition is the following: ‘If the system is
in 11, it certainly is not in12 whenever these sets are disjoint.’ Thus, (2) should be replaced
with

(2′) For all statesϕ ∈ H, ‖ϕ‖ = 1,11,12 ∈ F(S),
if 11 ∩12 = ∅ then 〈ϕ|E11ϕ〉 = 1H⇒ 〈ϕ|E12ϕ〉 = 0.

This is equivalent toP (1)11
6 P

(0)
12

, whereP (1)1 , P
(0)
1 denote the spectral projections ofE1

associated with the eigenvalues 1 and 0, respectively. It is obvious that this condition is
equivalent to (2) in the case of projections. For effects,(2′) only impliesP (1)11

P
(1)
12
= 0,

while in generalE11E12 6= 0. Note that(2′) can be obtained as a consequence of the
assumption that1 7→ E1 is a (not necessarily normalized) POM: if, for disjoint11,12,
E11 +E12 = E11∪12(6 I ) and〈ϕ|E11ϕ〉 = 1, then〈ϕ|E12ϕ〉 = 0.

Theorem 3. If the structure(H, a 7→ U(a),1 7→ E1) satisfies conditions (1),(2′) and (3),
thenP (1)1 = 0 for all (bounded) spatial sets1.

In appendix B we show how to adjust the proof of theorem 1 to obtain this result. We interpret
this result as follows: if there exists a localization observable satisfying the conditions of
theorem 3 then this observable is necessarilystrongly unsharpin the sense that its effectsE1
do not have eigenvalue 1. This leaves us with the question of whether among the strongly
unsharp, covariant localization observables there exist any that satisfy local commutativity.
To my knowledge the answer is not known. An indication to the negative is provided by a
recent theorem stating thatspacetimelocalization observables cannot belong to any quasilocal
algebra [14].

It is known that among the relativistic phase space observables there are strongly unsharp
observables, whose spatial marginals would thus in general be strongly unsharp covariant
localization observables. In the remaining part of the paper we address the question of
the relevance of the local commutativity condition (3) in the case of unsharp localization
observables: is it a necessary consequence of the requirement of Einstein causality? We shall
find a partial answer and along the way obtain an indication that phase space localization
observables do violate local commutativity.

3. Local commutativity and causality for unsharp localization observables

The term ‘Einstein causality’ refers to the intuitive idea of physical processes propagating with
at most the velocity of light. Following Schlieder [1] and Hegerfeldt [2], we will distinguish
betweenweakandstrong (Einstein) causality: the former refers to subluminal propagation
of changes of expectation values, whereas the latter describes subluminal propagation of
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individual, definite properties. Alternative terms in use aremacro- and microcausality,
respectively.

For sharp observables, the local commutativity condition is known to be equivalent to
weak Einstein causality [15]. This result is a consequence of a famous theorem due to
Lüders [16] which states the following: two (discrete) observables represented by self-adjoint
operatorsA,B commute if and only if for any state, the statistics of a measurement ofB

is not affected by a non-selectiveLüders measurementof A (that is, a measurement without
reading). This theorem can be extended to observables whose spectra are not discrete: the
commutativityA,B is equivalent to the statistical non-disturbance condition being stipulated
for Lüders measurements on all discrete coarse-grainings of the observableA. Now letA,B be
observables that can be measured in two spacelike separated regions of spacetime, respectively.
Then weak Einstein causality requires that acts of measurements in one region should not have
statistically significant effects in another region at a spacelike separation. This is captured by
the non-disturbance statement in the Lüders theorem.

There are strong indications that the Lüders theorem extends to the case of unsharp
observables: in fact two important special cases have been proven recently [17]. It can be
argued that these two cases are sufficiently comprehensive for physical purposes. They will
serve the present needs. The formulation of the following proposition rests on the notion of a
Lüders measurement for unsharp observables. LetA be an unsharp observable represented by a
complete family of effects,A = {Ei}i=1...N ,

∑
i Ei = I . A non-selective L̈uders measurement

of A leads to a state change of the object that is described by the Lüders state transformation,
defined via

ρ 7−→ IAL (ρ) :=
N∑
i=1

E
1/2
i ρE

1/2
i

for all state operatorsρ (for details on this concept, cf [18]). One considers the question
of under what conditions the outcome of a measurement of an effectB does not depend on
whether or not a non-selective measurement ofA has been carried out.

Proposition 1. LetA = {Ei}i=1...N be a collection of effects such that
∑

i Ei = I , and letB
be an effect. Then the equivalence

[B,Ei ] = 0 ∀i ⇐⇒ tr[ρB] = tr[IAL (ρ)B] ∀ρ
holds (at least) in the following two cases:
(α) B has a discrete spectrum of eigenvalues that can be ordered in decreasing order,A

arbitrary;
(β) A = {E1,I − E1}, B arbitrary.

In order to formulate weak Einstein causality, we need to assume a physically meaningful
association of observables with (bounded open) spacetime regions, in the sense that such
observables can be measured by means of operations carried out within these regions.
Such measurements, operations and observables will be calledlocal. In the context of
algebraic relativistic quantum theory, a measurement is local if the operations representing
the associated state changes are expressible in terms of elements of the corresponding local
algebra of observables [19]. This condition is satisfied for Lüders measurements. Now,weak
Einstein causalitymeans the following: ifA andB represent observables associated with two
spacelike separated spacetime regionsR1,R2, respectively, then the act of a non-selective local
measurement ofA should not influence the outcomes of a measurement ofB (and vice versa).
Hence, weak Einstein causality for Lüders measurements of local observables reads

R1, R2 spacelike separatedH⇒ tr[ρB] = tr[IAL (ρ)B] ∀ρ. (C)
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The state descriptionIAL (ρ) is appropriate to local observers acting inR2 since—given that
there are no classical signals faster than light—it represents the information available to them
if they know that a measurement inR1 is taking place. In view of proposition 1, it follows that
for local measurements of unsharp observables in spacelike separated regions to satisfy weak
Einstein causality, these observables must commute. This is remarkable as local measurements
at spacelike separations can be regarded in a way as joint measurements, and it is known
that unsharp observables can be jointly measurable without necessarily commuting with each
other.

Schlieder’s argument can now be formulated for localization observables as follows.

Proposition 2. Let A = {E1, E2}, whereE1 = E11, E2 = I − E11 and B = E12 are
localization effects, and11 ∈ F(S1), 12 ∈ F(S2) are bounded spatial sets contained in
spacelike separated regionsR1, R2, respectively. Suppose thatA andB are locally measurable
in these regions and that the Einstein causality condition (C) holds for them. ThenE11 and
E12 commute.

This statement is an immediate consequence of case (β) of proposition 1. It is interesting to
observe the following consequence: if a localization observable1 7→ E1 is represented
as a POM and is measurable by means of local operations, then causality requires this
POM to be commutative since all bounded disjoint spatial sets of theσ -algebraF(S) are
spacelike separated and hence commute with each other. On the other hand, covariant
relativistic phase space observables are constructed via generalized coherent states and thus
are non-commutative (see [6, 7]). Hence, such phase space observables cannot satisfy local
commutativity. This is not too surprising as a phase space localization measurement involves
a measurement of momentum which itself is not a local observable. However, there is a
possibility that the spatial marginals of a suitable covariant family of phase space observables
are commutative.

Besides weak causality, there is another, independent requirement that entails local
commutativity. This is the condition of (relativistic)objectivity: the descriptions of a pair
of spacelike separated local measurements given by different inertial observers should be
consistent with each other. Thus, consider two inertial observers in the intersection of the
forward lightcones (causal influence regions) of the two spacelike separated regionsR1, R2.
Suppose the observers are moving relative to each other in such a way that they assign different
time orderings to the two local measurements. Relativistic objectivity means that they predict
and record the same statistics for all possible future measurements. Therefore, although the
time orderings are different, the successive state changes should nevertheless lead to the same
final state in both descriptions. LetA = {E1, E2, . . .},

∑
Ei = I , andB = {F1, F2, . . .},∑

Fj = I represent the two discrete local observables in question, and letIAL,i , IBL,j denote
the associated L̈uders operations. Then objectivity is expressed by the following condition
[15]:

R1, R2 spacelike separatedH⇒ IAL,i
(
IBL,j (ρ)

) = IBL,j (IAL,i(ρ))
for all ρ, i, j.

(O)

It can be shown that the commutativity of the Lüders operations forA andB is equivalent
to the commutativity of allEi with all Fj [20]. (For pairs of observables in the domain
of applicability of proposition 1, this equivalence is a consequence of the fact that due to∑

i IAL,i = IAL , the commutativity property in (O) implies the non-disturbance property in
(C)). Therefore, the relativistic objectivity condition is equivalent, via local commutativity, to
weak Einstein causality. This important connection (e.g. [21] and references therein) is thus
found to also be valid for unsharp observables. The fact that the class of measurements used
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in these arguments is of the Lüders type is only of technical significance: weak causality and
objectivity would be necessary requirements to be imposed onall local measurements and
therefore, in particular, on L̈uders measurements.

The potential conflict between causality and localizability for relativistic quantum
mechanics has been highlighted by Hegerfeldt on the basis of a notion of strong causality
that requires subluminal propagation of localization properties (for a concise review, see [2]).
More precisely,strong causalityrequires that for a bounded spatial set1, if the probability of
localization at timet = 0 is 1, then the probability of localization at timet > 0 within the
inflated set1t = {x ∈ S | dist(x,1) 6 ct} is also equal to 1. It is shown that this condition
cannot be satisfied by any (covariant) localization observable.

It is not difficult to see that in the case of sharp localization observables represented
as a normalized projection-valued measure1 7→ P1, the strong causality implies local
commutativity (3) and thus weak causality. Translating this into the Heisenberg picture, this
meansP1 6 P1t+ta, wherea is the future timelike unit vector perpendicular toS. Now let
11 ∈ S,12 ∈ S + ta be two spacelike separated bounded spatial sets. Strong causality yields
P11 6 P11,t+ta 6 I − P12, and soP11P12 = 0. Thus, the violation of local commutativity
for sharp localization observables entails the violation of strong causality. It should be noted,
however, that Hegerfeldt’s theorem takes into account the possibility of localization operators
E1 which are effects but not projections. In this case strong causality implies the following
chain of inclusions for the respective spectral projections:

P
(1)
11
6 P (1)11,t+ta 6 P

(0)
12
6 I − P (1)12

and soP (1)11
P
(1)
12
= 0. It is not clear whether in this case strong causality does imply

weak causality (for localization effects). However, the assumption of local commutativity,
via theorem 3, is seen to render strong causality inapplicable: the premise of strict initial
localization cannot be fulfilled. Therefore, in the present framework strong causality is an
unnecessary assumption. Its virtue lies in the fact that some of the other postulates (such as
covariance and even the group representation) could be dropped and still strong causality is
violated in the sense of instantaneous delocalization of wavefunctions [2]. However, without
translation covariance—which we regard as a defining property of localization observables—it
appears doubtful whether such delocalizations can be interpreted as giving rise to (possible)
superluminal particle propagations.

4. Discussion

We have generalized a theorem due to Schlieder which states the incompatibility between
local commutativity and sharp covariant localizability. Based on a generalization of Lüders’
theorem, we then found that local commutativity is equivalent to weak Einstein causality as
well as to a postulate of relativistic objectivity, also in the case of unsharp observables—
provided they admit local measurements. The results of sections 2 and 3 leave us with the
following situation.

(I) For localization observables1 7→ E1 admitting sharply localized states (i.e. states which
yield probability 1 in bounded spatial sets), local commutativity is violated (theorems 1
and 3). If there is any physical sense in saying that the effectsE1 are measurable by
local operations, then weak Einstein causality would be violated (propositions 1 and 2).
Such local, sharp localization measurements would lead to statistical influences between
spacelike separated regions and hence, superluminal signals.
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(II) For localization observables to satisfy local commutativity, they must necessarily be
strongly unsharp. It is an open question as to whether local commutativity is actually
satisfied for any or all strongly unsharp localization observables; an interesting (though
unlikely) class of candidates to be investigated is given by the spatial marginals of phase
space observables. If a strongly unsharp localization observable can be measured by local
operations, and if it violates local commutativity, this would again imply a violation of
weak Einstein causality.

The problematic conclusion in (I) can be countered by arguing that sharp spatial
localization is an operationally meaningless idealization. It would, in fact, seem implausible to
ignore the quantum nature of the constituents of the detectors used to define spatial localization
sets. It appears more likely that realistic procedures for measuring localization observables,
which are based on quantum probes with extended wavefunctions and interactions with infinite
ranges (albeit with decreasing strengths), would render the spatial localization sets intrinsically
fuzzy. Also, confining a quantum object or probe within sharp spatial boundaries would require
an infinite amount of energy (e.g. an infinite potential well). Thus, the causality violation
for sharp localizations could be seen as an artefact arising from an unjustified idealization.
(From the perspective of a relativistic quantum field theory, such strong interactions as would
be needed for sharp localization measurements would give rise to particle pair creation and
could not therefore be described within a single-particle theory. However, we would prefer a
decision on the limitations of a single-particle relativistic quantum mechanics fromwithin that
theory.)

The conclusion of causality violations for either sharp localizations (scenario (I)) or
strongly unsharp localizations violating local commutativity (scenario (II)) may be barred for
another, common reason: localization observables could simply fail to be local observables.
In fact, the concept of a localization observable—whether sharp or unsharp—involves global
elements, namely, the totality of all bounded spatial subsets ofS as well as the defining
requirement of translation covariance. It is thus quite conceivable that from their very
operational definition, sharp or unsharp localization effects cannot be regarded as locally
measurable quantities. As local measurability is a premise of the weak Einstein causality
postulate (and of the objectivity requirement), this postulate and, along with it, proposition 2
would in this situation become inapplicable. Thereby the validity of weak causality would
not be affected by a violation of the commutativity condition (3); indeed, this condition would
lose its intended meaning indicated by the phrase ‘local commutativity’. This interpretation
of theorems 1 and 3 is in accordance with the analysis given by Schlieder [1]: in the context
of a relativistic local quantum (field) theory, which stipulates local commutativity, theorem 1
is interpreted as implying that localization observables admitting sharp localization cannot
belong to a local algebra.

The assumption of local measurability of localization observables has also been challenged
by Butterfield and Fleming [22] in a recent lucid analysis of the ‘strange’ properties of
localizations. I feel this point requires a detailed measurement theoretic investigation before
Schlieder’s theorem could be taken as conclusive evidence against the possibility of a relativistic
quantum mechanics of particles in the sense proposed by Malament [10].

If it is granted that localization observables allowing sharply localized states are not local
observables, so that weak causality would not be challenged, then Hegerfeldt’s theorem would
still entail the instantaneous spreading of wavefunctions and hence potential superluminal
propagation of a particle. I would argue that this cannot be used for superluminal signalling:
in order for the particle to carry a bit of information, the sender would need to be able to
control the particle to the extent that (s)he is capable of either releasing the particle or keeping
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it trapped. This would entail the infinite energy problem mentioned above. On the other
hand, if the particle is free, the ‘sender’ will have no control over it, and the fact that it had
been localized in a bounded region at some initial instant of time does not by itself carry any
information to a spacelike separated receiver.

The preceding lines of reasoning can be carried somewhat further. Up to now we have
assumed that bounded spacetime regions—in which local physical operations are to be carried
out—can be defined operationally solely by classical physical means. Thus it is assumed that
the quantum nature of the constituents of the relevant measuring devices can be ignored.
It would be the task of a relativistic quantum theory of spacetime measurements, which
remains yet to be developed, to justify this assumption. As indicated above, sharp localization
may not be an operationally meaningful concept; given that the (quantum) devices used to
define spacetime regions are themselves only unsharply localizable, the concept of a local
measurement—and with it that of a local observable algebra—would have to be reformulated.
This would render weak and strong Einstein locality inapplicable and would call for an
operationally significant notion of causality, possibly in the form of a probabilistic concept
and involving reference to appropriate levels of detector sensitivities.

Hegerfeldt has proposed a probabilistic causality condition according to which the ‘bulk’
of a wavepacket propagates with subluminal speed. This condition is still found to be violated
for approximately localized states with fast decaying (‘exponential’) tails [2]. On the other
hand, it has been shown that the probabilities for causality-violating behaviour are spurious
from a practical point of view (e.g. [8]). However, the experimental relevance of the present
formulations of probabilistic causality does not seem entirely evident; in particular, it is
again unclear whether violations of this causality condition would permit the existence of
superluminal signals.

Finally, we point out that a coherent account of the status of postulates such as local
commutativity, or weak and strong causality in current relativistic quantum theories is
needed not only for the sake of theoretical argument. In recent years, various experimental
groups have reported demonstrations of superluminal propagation phenomena with evanescent
microwave modes and with pairs of photons passing through opaque media. An up to date
discussion of such experiments can be found in the special proceedings issue ofAnnalen
der Physikcited in [2, 21]. Some authors seem close to suggesting that the possibility of
superluminal signalling on the basis of such experiments may not be ruled out. Such a
claim cannot be refuted simply by making reference to the fact that our existing relativistic
quantum theories incorporate the principle of weak causality: they do so because it has
been built in ‘by hand’, namely by stipulation of local commutativity. This situation raises
the interesting question as to what could constitute a principal theoretical demonstration
of the impossibility of superluminal signals. (It appears to me that it would be hard to
dismiss relativistic objectivity, which seems to constitute a necessary precondition for any
scientific theory; and as we have seen, within Hilbert space quantum theory this implies
local commutativity and weak causality.) As long as a plain experimental demonstration
of superluminal signals is lacking (which I suspect it will be for a very long time), the
compatibility of these experiments with relativistic causality could only be demonstrated
by way of providing a satisfactory quantitative account of the experiments using relativistic
quantum theory; this would amount to giving a causal explanation. Such a study will have to
be based on the use of sound localization observables for the photons involved; and these
are known to be necessarily strongly unsharp [9]. Thus, all the questions raised above
concerning the (non-)locality and possible probabilistic causality of localizations will have
to be addressed. Some of these issues will be taken up in a forthcoming study by J Brooke
and the author [23].
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Appendix A. Effects, POMs, unsharpness and all that

Operational quantum theoryis a conceptual completion of quantum mechanics on Hilbert
space (H) in the sense that the most general notion of an observable is incorporated that is
compatible with the probabilistic structure of the theory. An observable encompasses the
totality of statistics of a given measurement (or class of measurements yielding the same
statistics) with respect to all input states. Insofar as the probability for an outcome is to be
given in terms of the expectation value of some operator in any state, it follows that such an
operator must be positive and have a spectrum within the interval [0, 1]. Operators of this
kind, which represent the occurrence of a particular outcome in a measurement, are called
effects. Hence, a linear operatorE is an effect if it is bounded byO andI , O 6 E 6 I . An
observable will thus be constituted by an association of effects with subsets of possible values.
The probability for an outcome in one of a collection of disjoint value sets should be given by
the sum of probabilities for the separate sets. This leads to the additivity property of the map
from value sets to effects. For convenience, one allows additivity for finite or countably many
disjoint sets and refers to this asσ -additivity. In addition, it is usually assumed that for a given
measurement it is certain thatsomeoutcome will occur, that is, that the probability for the total
value set,�, is equal to unity. This is to say that the associated effect in the unit operator,I .
One is thus led to the definition of an observable as a normalized positive operator-valued (or
effect-valued) measure6 3 X 7−→ E(X) defined on a measurable space(�,6) such that:

O 6 E(X) (positivity)

E

(⋃
i

Xi

)
=
∑
i

E(Xi) if Xj ∩Xk = ∅, j 6= k (σ -additivity)

E(�) = I (normalization).

It should be noted that observables in the usual sense are captured by this definition by virtue of
the spectral theorem: first of all, the set of effects contains all projections; and any self-adjoint
operator gives rise to a unique projection-valued measure on the real Borel algebra(B(R)),
its spectral measure. Effect-valued measures that are not projection valued are distinguished
from projection-valued measures by the following important property: a projectionP and its
complement,P⊥ := I − P , are necessarily orthogonal to each other, that is,PP⊥ = O.
Conversely, if an effectE and its complementE⊥ := I − E satisfyEE⊥ = O thenE is a
projection (asE = E2). This fact suggests the definition of asharp observableas an effect-
valued measure such that for any effectE in its range,E and its complementE⊥ have no
common positive, non-zero lower bound; this is equivalent toEE⊥ = O, and hence to the
statement that the effect-valued measure is actually a projection-valued measure. All other
observables will be referred to asunsharp observables. Note that it is possible for an unsharp
observable to have definite values, namely, if the effect associated with some value or range of
values has eigenvalue 1. The termunsharpnessonly refers to the fact that some effects in the
range of the observable have a spectrum within [0, 1] not limited to (a subset of){0, 1}. For
further information on unsharp observables, the reader may refer to the monograph [18].
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Appendix B. Proof of theorem 3

We follow Malament [10] step by step, the only modification being an appropriate choice of
the pairs of projections in question. The reader may wish to accompany the construction with a
spacetime diagram or else consult figure 1 of [10]. The covariance properties of our projections
are a consequence of the corresponding covariance properties of the effects and the spectral
theorem. Let1 ∈ F(S) be a bounded spatial set anda ∈ M tangent toS such that1 and
1 + a are disjoint and such that for all future-directed timelikea1 and all sufficiently small (in
modulus)t ,1 and1 + a + ta1 are spacelike separated. Due to the localization condition(2′)
one has

∀ϕ ∈ H (‖ϕ‖ = 1) : 〈ϕ|E1ϕ〉 = 1H⇒ 〈ϕ|E1+aϕ〉 = 0.

This is equivalent to

P
(1)
1 (I − P (0)1+a) = 0. (i)

Applying translation covariance and locality, one obtains for sufficiently smallt :

[E1,U(ta1)E1+aU(ta1)
∗] = [E1,E1+a+ta1] = 0

and thus also (by virtue of the spectral theorem)

[P (1)1 , U(ta1)(I − P (0)1+a)U(ta1)
∗] = [P (1)1 , I − P (0)1+a+ta1

] = 0. (ii)

Now apply lemma 1 (takingV (t) = U(ta1), E1 = E1, E2 = I − P (0)1+a)—using the
spectrum condition and (i), (ii)—to conclude that for all future-directed timelikea1, and allt ,
P
(1)
1 U(ta1)(I − P (0)1+a)U(ta1)

∗ = 0, and therefore

P
(1)
1 (I − P (0)1+a+ta1

) = 0. (iii)

Next leta2 be any future-directed timelike unit vector. For sufficiently larget2 > 0, the set
1 + t2a2 is to the timelike future of1 + a. Then one can findt2 > 0 andε > 0 such that
1+ (t2 + t)a2 is to the timelike future of1+a for all t with |t | < ε. Hence if|t | < ε, there is a
future-directed timelike unit vectora1 and a numbert1 such that1+ (t2 + t)a2 = 1+ a + t1a1.
Thus, by (iii), if |t | < ε, thenP (1)1 (I − P (0)1+(t2+t)a2

) = 0, or equivalently, by translation

covariance:P (1)1 U(ta2)(I − P (0)1+t2a2
)U(ta2)

∗ = 0. Invoking lemma 1 again (withE1 = P (1)1 ,

E2 = I − P (0)1+t2a2
), one obtains

P
(1)
1 U(ta2)(I − P (0)1+t2a2

)U(ta2)
∗ = 0

and hence (by translation covariance)

P
(1)
1 U

(
(t + t2)a2

)
(I − P (0)1 )U

(
(t + t2)a2

)∗ = 0

for all t . Choosingt = −t2, one concludes thatP (1)1 (I − P (0)1 ) = 0, and soP (1)1 6 P
(0)
1 , that

is,

P
(1)
1 = 0.
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[16] Lüders G 1951̈Uber die Zustands̈anderung durch den MessprozessAnn. Phys., Lpz.8 322–8
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